Applies garbage model to introduce realistic data quality issues. Replaces some valid values with implausible values (corrupt_low, corrupt_high, corrupt_future, etc.).
Details
Two-step garbage model:
Identify valid value indices (not missing codes)
Sample from valid indices based on garbage proportions
Replace with garbage values
Ensure no overlap (use setdiff for sequential garbage application)
Garbage types:
corrupt_low: Values below valid range (continuous, integer)
corrupt_high: Values above valid range (continuous, integer)
corrupt_future: Future dates (date, survival)
Examples
if (FALSE) { # \dontrun{
values <- c(23.5, 45.2, 7, 30.1, 9, 18.9, 25.6)
result <- make_garbage(values, details_subset, "continuous", seed = 123)
# Some valid values replaced with implausible values
} # }