This function creates a derived diet variable (diet_score) based on consumption of fruit, salad, potatoes, carrots, other vegetables and juice. 2 baseline points plus summation of total points for diet attributes. Negative overall scores are recoded to 0, resulting in a range from 0 to 10.
1 point per daily fruit and vegetable consumption, excluding fruit juice (maximum 8 points).
-2 points for high potato intake (>=7 (males), >=5 (females) times/week)
-2 points for no carrot intake
-2 points per daily frequency of fruit juice consumption greater than once/day (maximum -10 points)
diet_score_fun(FVCDFRU, FVCDSAL, FVCDPOT, FVCDCAR, FVCDVEG, FVCDJUI, DHH_SEX)
FVCDFRU | daily consumption of fruit |
---|---|
FVCDSAL | daily consumption of green salad |
FVCDPOT | daily consumption of potatoes |
FVCDCAR | daily consumption of carrots |
FVCDVEG | daily consumption of other vegetables |
FVCDJUI | daily consumption of fruit juice |
DHH_SEX | sex; 1 = male, 2 = female |
While diet score can be calculated for all survey respondents, in the 2005 CCHS survey cycle, fruit and vegetable consumption was an optional section in which certain provinces had opted in to be asked to respondents. In this survey cycle, fruit and vegetable consumption was asked to respondents in British Columbia, Ontario, Alberta, and Prince Edward Island. As such, diet score has a large number of missing respondents for this cycle.
# Using the diet_score_fun function to create the derived diet variable # across CCHS cycles. # diet_score_fun() is specified in the variable_details.csv. # To create a harmonized diet_score variable across CCHS cycles, use # rec_with_table() for each CCHS cycle and specify diet_score_fun and the # required base variables. # Using merge_rec_data(), you can combine diet_score across cycles. library(cchsflow) diet_score2009_2010 <- rec_with_table( cchs2009_2010_p, c( "FVCDFRU", "FVCDSAL", "FVCDPOT", "FVCDCAR", "FVCDVEG", "FVCDJUI", "DHH_SEX", "diet_score" ) )#>#>#>#>#>#>#>#>#>#>#>#> DHH_SEX FVCDCAR FVCDFRU FVCDJUI FVCDPOT FVCDSAL FVCDVEG diet_score #> 1 2 0.1 4.0 4.0 0.1 0.3 4 4.0 #> 2 2 0.1 1.0 0.1 0.1 0.4 2 5.6 #> 3 2 0.1 0.1 1.0 0.0 0.3 1 3.5 #> 4 1 NA NA NA NA NA NA NA #> 5 1 0.4 0.6 1.0 0.4 0.1 6 9.5 #> 6 2 0.3 1.0 0.0 0.3 0.3 1 4.9diet_score2011_2012 <- rec_with_table( cchs2011_2012_p,c( "FVCDFRU", "FVCDSAL", "FVCDPOT", "FVCDCAR", "FVCDVEG", "FVCDJUI", "DHH_SEX", "diet_score" ) )#>#>#>#>#>#>#>#>#>#>#>#> DHH_SEX FVCDCAR FVCDFRU FVCDJUI FVCDPOT FVCDSAL FVCDVEG diet_score #> 195 1 0.1 1.0 0.1 0.1 1.0 1.0 5.2 #> 196 1 0.0 0.4 0.7 0.3 0.0 0.4 1.1 #> 197 1 0.1 0.1 1.0 0.6 0.3 0.7 3.8 #> 198 2 0.1 1.0 0.3 0.1 0.4 0.4 4.0 #> 199 1 1.0 1.0 0.1 1.0 0.3 1.0 4.3 #> 200 2 0.3 2.0 0.0 0.6 0.4 4.0 9.3combined_diet_score <- suppressWarnings(merge_rec_data(diet_score2009_2010, diet_score2011_2012)) head(combined_diet_score)#> DHH_SEX FVCDCAR FVCDFRU FVCDJUI FVCDPOT FVCDSAL FVCDVEG diet_score #> 1 2 0.1 4.0 4.0 0.1 0.3 4 4.0 #> 2 2 0.1 1.0 0.1 0.1 0.4 2 5.6 #> 3 2 0.1 0.1 1.0 0.0 0.3 1 3.5 #> 4 1 NA NA NA NA NA NA NA #> 5 1 0.4 0.6 1.0 0.4 0.1 6 9.5 #> 6 2 0.3 1.0 0.0 0.3 0.3 1 4.9#> DHH_SEX FVCDCAR FVCDFRU FVCDJUI FVCDPOT FVCDSAL FVCDVEG diet_score #> 395 1 0.1 1.0 0.1 0.1 1.0 1.0 5.2 #> 396 1 0.0 0.4 0.7 0.3 0.0 0.4 1.1 #> 397 1 0.1 0.1 1.0 0.6 0.3 0.7 3.8 #> 398 2 0.1 1.0 0.3 0.1 0.4 0.4 4.0 #> 399 1 1.0 1.0 0.1 1.0 0.3 1.0 4.3 #> 400 2 0.3 2.0 0.0 0.6 0.4 4.0 9.3