Adds rType column with smart defaults if missing. This enables
language-specific type coercion (R types like integer, double, factor).
Usage
apply_rtype_defaults(details)
Arguments
- details
Data frame. Variable details metadata.
Value
Data frame with rType column added (if missing) or validated (if present).
Details
Default rType values
If rType column is missing, defaults are applied based on variable type:
Valid rType values
"integer": Whole numbers (age, counts, years)
"double": Decimal numbers (BMI, income, percentages)
"factor": Categorical with levels
"character": Text codes
"logical": TRUE/FALSE values
"Date": Date objects
"POSIXct": Datetime objects
See also
Other mockdata-helpers:
apply_garbage(),
apply_missing_codes(),
extract_distribution_params(),
extract_proportions(),
generate_garbage_values(),
get_cycle_variables(),
get_raw_variables(),
get_variable_details(),
has_garbage(),
make_garbage(),
sample_with_proportions()
Examples
if (FALSE) { # \dontrun{
# Missing rType - defaults applied
details <- data.frame(
variable = "age",
typeEnd = "cont",
recStart = "[18, 100]"
)
details <- apply_rtype_defaults(details)
# details$rType is now "double"
# Existing rType - preserved
details <- data.frame(
variable = "age",
typeEnd = "cont",
rType = "integer"
)
details <- apply_rtype_defaults(details)
# details$rType remains "integer"
} # }